Ventotene 2025

via Coxeter polytopes

Higher-dimensional hyperbolic manifolds

A hyperbolic link of 7 ton in a product of two surfaces:

$$M^{4} = (\Xi \times \Xi) \times (T_{1} \cup \cdots \cup T_{7}) \text{ is hyperbolic with } 7 \text{ cusps}$$

$$\mathcal{X}(M^{4}) = \mathcal{X}(\Sigma \times \Xi) = (-2) \cdot (-2) = 4$$

A SANITY CHECK: Must be 112 x 2 11 x 11 M4 11 [Fuji wara-Manning]

•
$$\|\Sigma \times \Sigma\| = 6 \times (\Sigma \times \Sigma) = 6.4 = 24$$
 [Bucher]

•
$$\|M^4\| = \frac{V_0 I(M^4)}{V_0} = \frac{4\pi^2}{3V_0} \chi(M) \sim 49 \chi(M) = 49.4 = 196$$

Proof:

$$\stackrel{ riangle}{>}$$

A fibration on a hyperbolic manifold is quite paradoxical: geoderic planes Peano curves! [Cannon-Thurston] 5 xIR hyperbolic fiber of a fibration totally geoderic

A very small example in dimension 3

The figure-8 Krot complement double covers the Gieseking manifold that is constructed as follows:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$F(\chi) = A \begin{pmatrix} x \\ y \end{pmatrix} \text{ descends to } f: T^{2} \Rightarrow T^{2} = T$$

ideal regular hyperbolic tetrahe dron

 $M^{3} = T_{0}^{2} \times [0,1] \times (x,1) \sim (f(x),0)$ MAPPING TORUS The Gieseking manifold

picture by D. Calegari In general dimension n?

Chern-Gauss-Bonnet: n even $= > \chi(M) \neq 0 \ \forall M \ \text{hyperbolic}$

Circle-valued Morse function: M does not fiber

We have $X(M) = \sum_{i=0}^{n} (-i)^{i} c_{i}$

ci = # { critical points with index i}

fis PERFECT if $|X(M)| = \sum_{i=0}^{n} c_i$

when n is odd: f perfect => f fibration

When you have one, you have many:

- · fibrations (perfect functions) lift to finite covers;
- · fibrations (perfect functions) can be perturbed, i.e.

$$M \stackrel{f}{=} S^1 \longrightarrow [f] \in [M, S^1] = Hom (\pi, \Pi, Z) = H^1(M, Z) \subseteq H^1(M, IR)$$

Fibrations realise

 $V \cap H^1(M, Z)$

with $V \subseteq H^1(\Pi, IR)$

open cone

[Battista, M.] [Italiano, M., Migliorini]

Thm: The manifolds M3, M4, M5, M6 have a

perfect circle-valued Morse function

(that is a fibration in odd dimension)

proof: M = {Pv} ~D Dual cube complex C

When M has cusps it collapses onto C

Bestvina-Brady theory

COHERENT ORIENTATION ON EDGES

DIAGONAL MAP

We get a PL map f: C -o IR, that is regular everywhere except possibly at vertices

Ascending and descending links

Lemma: If they collapse to points, P is regular for t "spheres, P is Morse critical for f

A very small example in dimension 5

The Ratcliffe-Tschantz 5-manifold N⁵ has smallest known volume $\frac{7}{4}$ 5(3) = 2.103... and two cusps

H₁ = $\frac{7}{4}$ × $\frac{7}{4}$ H₂ = $\left(\frac{7}{47}\right)^2$ H₃ = $\frac{7}{4}$ H₄ = $\frac{7}{4}$

The fiber F4 is an aspherical 4-manifold with 5 boundary components (HW)

$$H_1 = (\frac{72}{422})^4$$
 $H_2 = \frac{72}{4}$ $H_3 = \frac{72}{4}$ $X(F^4) = 1$

Aninspiring construction

A =
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 $f(x) = A(x)$ descends to $f: T^2 - p T^2$
 $g(x) = \begin{pmatrix} -x \\ -y \end{pmatrix}$ $O^2 = T^2/\langle g \rangle$ f descends to $f: O^2 - p O^2$

orthogonal invariant foliations (stable & unitable)

FLAT (stable & unitable)

MANIPOLD STREET STORTHOLD

FLAT MANIPOLD

The provided by 1/2 2/21

eigenvalues of A

Concert

FLAT MANIPOLD

A direct construction of Fand the monodromy 4: F4-0F5

(such that
$$N^{5} = F^{4} \times [0,1]_{\Lambda}$$
 (x,1) $\sim (\varphi(x),0)$ is the Rotaliffe-Tschortz hyp 5-mfd)

 $3 = e^{\frac{2\pi i}{5}}$
 $[3] \stackrel{id}{\smile} \circ C = 0$
 $[3] \stackrel{}{\smile} \circ C \times C$
 $[3] \stackrel{}{\smile} \circ C \times C$

$$A = Dm(f) \text{ is a lattice in } \mathbb{C}^2 \text{ with basis}$$

$$(1,1) (3,3^2) (3^2,3^4) (3^3,3)$$

T4 = C/ is a 4-torus with many automorphisms

Every group automorphism of Z[3] yields an automorphism of T4 yields r(z,w) = (3z,3 m) isometry r(z) = 3z $S(z,w) = (-\overline{z}, -\overline{w}) \quad \text{isometry}$ $S(Z) = -\overline{Z}$ " $\psi(z,w) = (\lambda z, -\lambda^{-1}w)$ affine, a order Y(Z) = >Z $\lambda = \frac{\sqrt{5+1}}{2} = -3^2 - 3^3$ GOLDEN RATIO $\lambda'' = 3 + 3^5 = \frac{\sqrt{5} - 1}{2}$

$$\lambda = \frac{15+1}{2} = -3^2 - 3^3 \text{ GOLDEN RATIO} \qquad \lambda' = 3+3^5 = \frac{15-1}{2}$$

$$(x \{pt\}) \ \text{ { } } \{pt\} \times \text{ { } } \text{ } \text{ { } } \text{ } \text{ } \text{ { } } \text{ } \text{ { } } \text{ } \text{ { } \text{ } \text{$$

 $D_{10} = \langle r, s \rangle$ QT4 $0^4 = T^4/D_{10}$ f descends to $f: 0^4 \rightarrow 0^4$

What is 04? It is S4 with singular set a torus T = 54 that is not locally flat at Spoints P.,..., Ps sigure eight triple branched cores triple hancled H W Covenas ORBIFOLD COME ANGLE T F= F \ {P, , ..., P, \ CONE FLAT 4-MANIFOLD COME ANGLE 31

The induced $\varphi: \overline{F} - o \overline{F}$ has two orthogonal geodesic foliations that are expanded by λ , $\frac{1}{\lambda}$

They look like a product

Cor: 3 manifold M4 such that

- 1) no element in $H_2(M)$ is represented by immersed or
- 2) or many elements in H2 (M) are represented by embedded ()

After passing to sufficiently large finite cover: $M = F \times [0,1] / (x,1) \sim (\varphi(x),0)$ [Fujiwara-Manning]: TI, (M) is Gromov hyperbolic Im [Italiano, M., Migliorini] There exists a finite type H < 6 in hyperbolic G which is not hyperbolic "T, (F) Conj: F is locally CAT(0) La Cor: 3 X locally CAT(0), TI,(X) not hyperbolic, 7, (x) & 7/x Z/